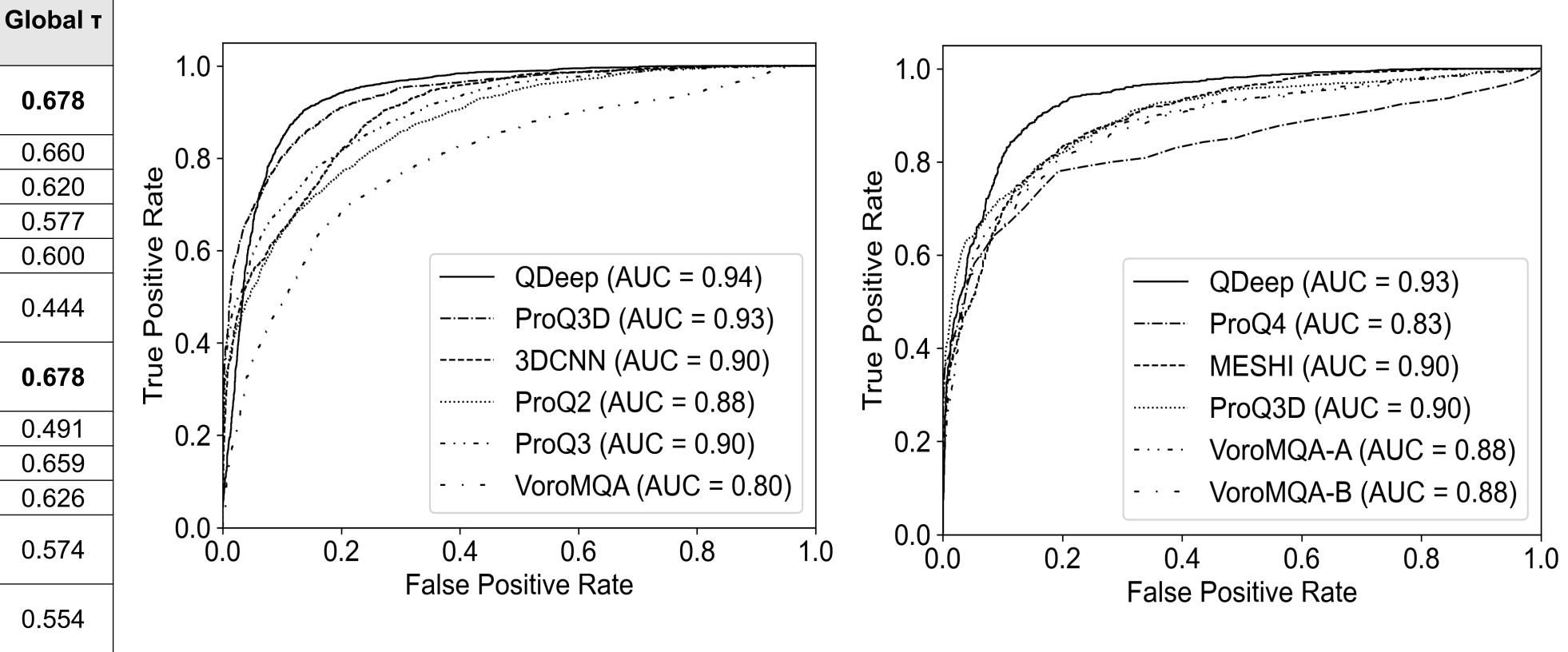

QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks

Performance comparison of single-model quality estimation methods on CASP12 and CASP13 stage 2 datasets


Dataset	Method	Avg. r	Avg. ρ	Avg. т	Avg. Ioss	Global r	Global ρ	0
	QDeep	0.740	0.657	0.492	0.051	0.863	0.871	
	ProQ3D	0.688	0.631	0.467	0.086	0.851	0.847	
CASP12	3DCNN	0.661	0.585	0.427	0.081	0.834	0.818	
(stage 2)	ProQ2	0.624	0.556	0.404	0.091	0.784	0.770	
	ProQ3	0.604	0.536	0.390	0.071	0.806	0.793	
	VoroMQ A	0.560	0.502	0.362	0.105	0.604	0.603	
	QDeep	0.752	0.692	0.512	0.088	0.866	0.868	
	ProQ4	0.733	0.667	0.507	0.089	0.667	0.642	
CASP13 (stage 2)	MESHI	0.713	0.663	0.492	0.070	0.833	0.845	
	ProQ3D	0.671	0.619	0.457	0.084	0.849	0.811	
	VoroMQ A-A	0.665	0.606	0.442	0.092	0.769	0.767	
	VoroMQ A-B	0.651	0.592	0.429	0.072	0.754	0.750	

Md Hossain Shuvo¹, Sutanu Bhattacharya¹, Debswapna Bhattacharya^{1,2,*} ¹Department of Computer Science and Software Engineering and ²Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA *bhattacharyad@auburn.edu

4. Results

The ability of single-model quality estimation methods to distinguish good and bad models in CASP12 and CASP13 stage 2 datasets

Performance comparison of deep ResNets models used in QDeep with other deep learning architectures

CASP12 (stage 2)					CASP13 (stage 2)				
	Avg. r	Avg. ρ	Avg. т	Avg. Ioss	Avg. r	Avg. ρ	Avg. т	Avg. Ioss	
ResNet	0.740	0.657	0.492	0.051	0.752	0.692	0.512	0.088	
LSTM	0.716	0.596	0.452	0.059	0.735	0.668	0.500	0.116	
CNN	0.657	0.581	0.433	0.097	0.735	0.660	0.487	0.116	

Impact of deeper sequence alignment and the contribution of distance information

CASP12 (stage 2)					CASP13 (stage 2)				
	Avg. r	Avg. ρ	Avg. т	Avg. Ioss	Avg. r	Avg. ρ	Avg. т	Avg. Ioss	
QDeep	0.740	0.657	0.492	0.051	0.752	0.692	0.512	0.088	
QDeep DeepMSA	0.741	0.667	0.505	0.062	0.777	0.720	0.538	0.084	
QDeep NoDistance	0.677	0.601	0.442	0.065	0.668	0.613	0.445	0.091	

5. Conclusions

- Utilizing ensemble of deep the residual neural networks potentially improves the performance of model quality estimation
- Effective integration of distance information showed performance boost across all accuracy measures
- The performance is further improved in part by incorporating **deeper sequence** alignments

6. Reference

M.H. Shuvo, S. Bhattacharya, D. Bhattacharya, distance-based protein model quality QDeep: estimation by residue-level ensemble error classifications using stacked deep residual neural networks, **ISMB Proceedings**, (2020)